If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-100x+220=0
a = 10; b = -100; c = +220;
Δ = b2-4ac
Δ = -1002-4·10·220
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20\sqrt{3}}{2*10}=\frac{100-20\sqrt{3}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20\sqrt{3}}{2*10}=\frac{100+20\sqrt{3}}{20} $
| 10-2m=0- | | 95=183t-16t | | ((3m-4)/4)-1/5=(m/4)+(3/10) | | ((3m-4)/4)-1/5=m/4+3/10 | | 3600=1200a | | n/5-10=15 | | 5t-3=3+-5 | | 5x-2/3=8 | | (2D^2+D-6)y=0 | | A(11)=3.14r^2 | | 11=4x-1/3x | | 4(3e-3)=4+2(3e-5) | | (x-3)/(5)+(2)/(7)=4 | | (x-3)/5+2/7=4 | | 2x+x-30+11=156 | | 1/2((2-y)/5)-17/20=3/2((1-y)/10) | | 10÷3=r | | 10=10x-10 | | 1=3p+16 | | (5u)/7=(-15)/2 | | 3m-19=2 | | 3x+10/5=8 | | X^2+11x+100=0 | | 3x-5=2=2x+20 | | 49^(8x-32)=7^x^2 | | 5^(2x)-4.5^(x)-3=0 | | 9(4+2)=81,n= | | x3−5=13 | | 3(2x-5)^2=192 | | 16=4(2x-5 | | 72x+432=936 | | 3(3x+7)+3(2x-3)=42 |